- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Wan, Alvin (5)
-
Gonzalez, Joseph E. (4)
-
Culler, David (3)
-
Dutta, Prabal (3)
-
Fierro, Gabe (3)
-
Pemberton, Nathan (3)
-
Schleier-Smith, Johann (3)
-
Shankari, K. (3)
-
Zachariah, Thomas (3)
-
Chen, Kan (1)
-
Colburn, Alex (1)
-
Dai, Xiaoliang (1)
-
Fuxin, Li (1)
-
He, Zijian (1)
-
Patnaik, Kaushik (1)
-
Ren, Zhile (1)
-
Schwing, Alex (1)
-
Tian, Yuandong (1)
-
Vajda, Peter (1)
-
Wu, Bichen (1)
-
- Filter by Editor
-
-
null (4)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Culler, David; Dutta, Prabal; Fierro, Gabe; Gonzalez, Joseph E.; Pemberton, Nathan; Schleier-Smith, Johann; Shankari, K.; Wan, Alvin; Zachariah, Thomas (, ArXivorg)null (Ed.)
-
Culler, David; Dutta, Prabal; Fierro, Gabe; Gonzalez, Joseph E.; Pemberton, Nathan; Schleier-Smith, Johann; Shankari, K.; Wan, Alvin; Zachariah, Thomas (, ArXivorg)null (Ed.)
-
Culler, David; Dutta, Prabal; Fierro, Gabe; Gonzalez, Joseph E.; Pemberton, Nathan; Schleier-Smith, Johann; Shankari, K.; Wan, Alvin; Zachariah, Thomas (, ArXivorg)null (Ed.)
-
Wan, Alvin; Dai, Xiaoliang; Zhang, Peizhao; He, Zijian; Tian, Yuandong; Xie, Saining; Wu, Bichen; Yu, Matthew; Xu, Tao; Chen, Kan; et al (, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR))null (Ed.)Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing state-of-the-art, efficient neural networks. However, DARTS-based DNAS's search space is small when compared to other search methods', since all candidate network layers must be explicitly instantiated in memory. To address this bottleneck, we propose a memory and computationally efficient DNAS variant: DMaskingNAS. This algorithm expands the search space by up to 10^14x over conventional DNAS, supporting searches over spatial and channel dimensions that are otherwise prohibitively expensive: input resolution and number of filters. We propose a masking mechanism for feature map reuse, so that memory and computational costs stay nearly constant as the search space expands. Furthermore, we employ effective shape propagation to maximize per-FLOP or per-parameter accuracy. The searched FBNetV2s yield state-of-the-art performance when compared with all previous architectures. With up to 421x less search cost, DMaskingNAS finds models with 0.9% higher accuracy, 15% fewer FLOPs than MobileNetV3-Small; and with similar accuracy but 20% fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2 outperforms MobileNetV3 by 2.6% in accuracy, with equivalent model size. FBNetV2 models are open-sourced at https://github.com/facebookresearch/mobile-vision.more » « less
An official website of the United States government

Full Text Available